Ann. Rev. Plant Physiol. 3, 265-306 (1952)
PHYSIOLOGY OF FLOWERING1
ANTON LANG2,3
Kerckhoff Laboratories of Biology, California Institute of Technology,
Pasadena, California

1 The survey of the literature pertaining to this review was concluded in December, 1951.
2 Lalor Foundation Fellow.
3 The author is greatly indebted to Dr. James Bonner, Dr. A. W. Galston, Dr. K. C. Hamner, and Dr. J. L. Liverman for numerous valuable suggestions in preparing this review, and to these and many other colleagues for permission to use unpublished data.

Flowering can be separated into the following major stages: (a) floral initiation (the differentiation of floral primordia); (b) floral organization (the differentiation of the individual flower parts); (c) floral maturation, consisting of several processes, some of them concurrent or overlapping (growth of the flower parts, differentiation of the sporogeneous tissues, meiosis, pollen and embryo sac development); and (d) anthesis.

In this review the physiology of all four stages has been considered. The treatment of the three later stages, however, has been combined and is limited to those changes which involve sporophytic tissues only and which are integrating elements of the flowering process. For this reason, the physiology of meiosis, the entire pollen physiology, and the development of flower pigmentation and of any accessory flower parts are excluded. Through-out the treatment, stress has been laid upon the mechanism of the developmental changes, that is, on those physiological and biochemical processes which actually initiate or control development. Work of a purely descriptive nature has been referred to only when it is apt to shed some light on mechanisms as well. The review is therefore by no means a complete survey of the literature, even of the most recent vintage.

FLORAL INITIATION

Floral initiation and the later stages of flowering.—Of the various stages of flowering, floral initiation is by far the most fundamental one, for it marks the actual switch from vegetative to reproductive development. Most of the work on the physiology of flowering has been concerned with this stage. This is so even though in many cases some later stage (anthesis or the appearance of visible buds) has been observed, for the variations in these stages have been but projections of variations in the onset of floral initiation. In this connection, however, an important methodological question must be raised. Variations in the onset of floral initiation frequently persist unchanged throughout the following stages of flower development; but the initiation of floral primordia and their subsequent fate are still separate phenomena and may show a different dependence on one and the same condition. [266] Furthermore, the time of floral initiation depends on the rate of the preceding vegetative growth, and conditions which influence this rate may cause differences in the time of flower formation without having affected initiation in a specific manner. It therefore becomes imperative to use a criterion which permits clean separation between specific and nonspecific effects in floral initiation. Such a criterion is the relative amount of the preceding vegetative growth, as expressed by the number of leaves (or leaf pairs or whorls) preceding the first flower. This approach was first used in a consistent manner by Purvis (185, 190) in Secale; it is readily applicable to any plant with terminal flowers or with a clearly demarcated terminal inflorescence and also to many plants with a systemic habit of flowering, for example, Gossypium (121). Presence or absence of differences in the leaf numbers tells us whether initiation has been affected specifically or not, regardless of whether or not there are differences in the time of appearance of floral primordia, buds, or open flowers.

Photoperiodism and vernalization.—In numerous plants floral initiation shows a highly specific dependence on certain environmental conditions. These conditions may be quite different from those which are favorable for growth and other vegetative functions of the plant. The bulk of our information on the physiology of floral initiation has been derived from the study of such cases, for in plants lacking a specific environmental control of flowering it is extremely difficult to modify this process experimentally and thus make it accessible to analysis. The two conditions which most frequently control floral initiation in a specific manner are daylength and low temperature. The control of physiological processes by daylength or photoperiod—of which flower formation is but one case, although the most common and the most spectacular one—is called photoperiodism. The low-temperature requirement in annual herbaceous plants, in which it has been studied most thoroughly, has been termed vernalization.

The basic facts of photoperiodism and vernalization are well known. The terms and abbreviations which follow will be used in this review.

  1. Long-day plants (LDP): plants in which flowers are formed only in daylengths exceeding a definite value or in which flower formation is promoted in such daylengths.
  2. Short-day plants (SDP): plants in which flowers are formed only in daylengths below a definite value, or in which flower formation is promoted in such daylengths.
  3. Inductive daylength: any daylength permitting or accelerating flower formation.
  4. Noninductive daylength: any daylength preventing flower formation or retarding it maximally.
  5. Critical daylength: the daylength value separating the inductive and the noninductive ranges of photoperiod.
  6. Day-neutral or indeterminate plants: plants in which flower formation is not specifically dependent on daylength. [267]
  7. Biennial plants: plants with a qualitative low-temperature requirement in flower formation.
  8. Winter annual plants: plants with a quantitative low-temperature requirement.
  9. Summer annual plants: plants with no low-temperature requirement.
FIG. 1. The photoperiodic response of several species and strains of Xanthium.
+——+, X. spinosum (day-neutral plant; the slight promotion of flowering in high daylengths is probably unspecific).
x——x, one strain of X. strumarium (short-day plant with qualitative daylength response) and
——, another strain of X. strumarium (short-day plant; quantitative daylength response; pronounced critical daylength).
o——o, X. orientale (short-day plant; quantitative response; no critical daylength).

Data after Lang (118) and Lona (135).

Recently, a reclassification of plants with respect to their daylength dependence has been suggested, involving new names for all of the photoperiodic types (44). It is difficult, however, to see the point of such a proposal. The accepted terms are not only highly suggestive of what they describe, but also convey all that can be conveyed in the present state of our knowledge. It is essential, however, to use the recognized terms with greater accuracy. Thus, definitions of LDP and SDP, which are based on absolute or on relative specifications of daylength, are bound to in imperfect, since the inductive ranges of the two types overlap and critical daylength is a character [268] which is specific for every single species or variety. Even the definitions given above, which are unequivocal where they are applicable, are not quite all-inclusive. In some plants, any change of daylength throughout the entire range will promote or retard flower formation. These plants, thus, do not possess a pronounced critical daylength (see Fig. 1), and are not adequately covered in a classification based on this concept. This question will be returned to later (see p. 284).

PHOTOPERIODISM

The floral stimulus arising in photoinduction.—Both daylength and low temperature have a pronouncedly inductive mode of action. The effect appears with some delay and, in fact, frequently after the causative condition is no longer operative. In vernalization this is frequently the rule, for during the actual low-temperature treatment (the thermal induction) the growth and development of the plant may be completely suspended. In Photoperiodism, flowering usually occurs most rapidly with continuous inductive treatment, but some flowering response can be obtained with inductive periods far too short to permit any flower formation in the course of the actual treatment. This aftereffect of limited periods of inductive treatment is called photoperiodic induction. In addition, the effect of photoinduction in LDP is not reduced by interruptions with periods of short-day conditions (79, 123, 132, 169, 208), and it is possible to obtain flower formation in an LDP by "fractional induction," that is, by exposing the plant to an induction period insufficient to cause a flowering response and repeating this subinductive treatment alter a period of short-day conditions.

Thus, both in low-temperature and in daylength action we have to distinguish between the immediate action of the inductive conditions and the subsequent changes which result in actual floral initiation, and we have to try to separate these different changes. This is particularly urgent in photoperiodism for it seems that the opposite conditions of long and short days result, in different plants, in one and the same response, i.e. flower formation. To understand the daylength control of floral initiation, we must start by establishing whether or not the final changes which are responsible for this process are identical in LDP and SDP.

It has been known for some time that floral initiation in LDP and in SDP depends on the photoperiodic treatment of the leaves and that it is immaterial whether or not the sites of the actual response, the growing points, are subjected to the inductive conditions (17, 28, 31, 78, 81, 82, 94, 96, 108, 130, 133, 159, 160, 229). Also, the effect of temperature on the flowering response is the same if either entire plants or the leaf blades alone are kept at different temperatures during photoinduction (176, 178), whereas differential temperature treatment of the petioles or the stem tips becomes effective only at much lower temperatures (19). The immediate action of daylength takes place in the leaves and the effect is transmitted to the growing points. [269]

Two basically different possibilities can be visualized: (a) the inductive daylength promotes floral initiation; and (b) the noninductive daylength inhibits it. The former alternative implies that an LDP or an SDP is incapable of floral initiation unless it is photoinduced. The latter alternative implies that the plant is potentially capable of floral initiation under any daylength, but that initiation is secondarily suppressed by noninductive daylength conditions. The evidence summarized below shows clearly that a flower-promoting effect of the inductive daylength is an essential factor in photoinduction. First, favorable temperature conditions during induction promote floral initiation, unfavorable temperatures delay or suppress it (see p. 275). Second, if photoinduction is limited to part of a plant, flowers can also be formed (under certain conditions) in the noninduced parts. In extreme cases, photoinduction of a single leaf is sufficient, even if all other leaves of the plant are maintained on the noninductive conditions (81, 82, 94, 229). Finally, if a plant is photoinduced and then is grafted to an individual kept on the noninductive conditions, the latter plant will also initiate flowers (Table I. The graft partner capable of flower formation is called donor, the partner not capable of flower formation by itself is called receptor).

All these findings show that under the influence of the inductive daylength conditions, changes take place in the plant which actively promote floral initiation. In many cases, a single leaf is sufficient as the donor in a graft. The leaf can be detached from a plant and can be photoinduced while growing as a cutting [Lona (140)]. This fact shows that all the processes of floral initiation which are under immediate daylength control can be completed within the leaves—and the leaves alone. We can conclude that floral initiation in LDP and in SDP is determined by a floral stimulus which is generated in the leaves under the influence of photoinduction and is then translocated to the growing points.

The question whether there exists a comparable, that is a transmissible, flower-inhibiting effect of the noninductive daylength conditions, will be considered later. At present we want to ask ourselves what the relationship is between the floral stimuli of LDP and SDP. Attempts to identify the stimuli chemically have met with failure (see p. 287); therefore, only an indirect approach is possible, again by way of grafting. Grafts can be made not only between induced and noninduced plants of the same response type, but with equal ease between plants belonging to the opposite response types. In such experiments (see Table 1) it becomes evident that the stimulus from an LDP can also cause flower formation in an SDP and vice versa. The stimuli of the two photoperiodic types are interchangeable.

This interchangeability, however, is not yet a conclusive proof of identity. It is unlikely that we are dealing with two entirely unrelated and independent stimuli which have the same physiological activity; but it is conceivable that there are two independent complementary stimuli or that one stimulus is formed in two stages. In that case we can visualize that in LDP [270] the first, and in SDP the second, of these stimuli or stages is produced only under the inductive conditions, whereas in either case the other stimulus or stage is independent of daylength. To check these possibilities one must establish whether donors of the one response type cause floral initiation in receptors of the other type only if they are induced themselves. Such experiments have so far been made only in one case, using Nicotiana tabacum var. Maryland Mammoth as SDP and N. silvestris and Hyoscyamus niger as LDP (105, 121, 125). With Hyoscyamus as receptor, flower formation occurred only with short-day treated donors. In N. silvestris, some response was observed both with induced and with noninduced donors, but the entire effect may be nonspecific (see 125). Maryland Mammoth receptors flowered only when the Hyoscyamus and N. silvestris donors were maintained on long days (see Table II). While an extension of the experiments is desirable, the results indicate full identity of the floral stimuli of LDP and SDP.

TABLE I
FLOWER-INDUCTION GRAFTS*

Receptor Donor References
Short-day plant in long-day conditions Long-day plant in short-day conditions Short-day plant in short-day conditions Long-day plant in long-day conditions Day-neutral plant
A. Intravarietal grafts
Perilla frutescens var. nankinensis
Xanthium
spp.
Glycine soja
(soybean)
Petunia hybrida Perilla frutescens var. nankinensis
Xanthium
spp.
Glycine soja
(soybean) (same strains as receptors)
Petunia hybrida   29, 41
81, 196
113, 196
196
B. Intraspecific grafts
Nicotiana tabacum var. Maryland Mammoth
Glycine soja var. Biloxi, Peking
Gossypium hirsutum ssp. typicum,** punctatum,** mariegalante
Xanthium strumarium**
    Nicotiana tabacum var. Samsun etc.
Glycin soja var. Agate, Batorawka*
Gossypium hirsutum ssp. typicum#
Xanthium strumarium#
  153, 161
69, 99
121
157
C. Interspecific grafts
Helianthus tuberosus
Nicotiana tabacum
var.
Maryland Mammoth
Gossypium davidsonii
Gossypium raimondii
 
Nicotiana silvestris



Helianthus annuus


Gossypium hirsutum#
Gossypium hirsutum#
  29

153
121
121
D. Intergeneric grafts
Nicotiana tabacum var. Maryland Mammoth

Xanthium saccharatum
Hyoscyamus niger (annual strain) Nicotiana tabacum var. Maryland Mammoth Hyoscyamus niger (annual strain)

Callistephus sinensis
%

Callistephus sinensis%
153

125
217
+The table lists the grafts in which daylength-dependent plants kept on noninductive conditions (the receptors) were brought to flower formatin by graft union to plants capable of flower formation (the donors). As donor, either a day-neutral plant, or a daylength-dependent plant photoinduced either before or after the grafting can be used.
*Little daylength effect in floral initiation.
**Short-day strains.
#Day-neutral strains.
%Classification doubtful.

[271]

TABLE II
EFFECT OF INDUCED AND NONINDUCED DONORS UPON RECEPTORS OF THE OPPOSITE
PHOTOPERIODIC RESPONSE TYPE
(After 105, 121, and 125)

    Flowering response*
Receptor Donor Donor under
inductive
conditions
Donor under
non-inductive
conditions
Hyoscyamus niger (LDP) Nicotiana tabacum var.
Maryland Mammoth (SDP)
+ 0
Nicotiana silvestris (LDP) Nicotiana tabacum var.
Maryland Mammoth
(+)* (+)*
Nicotiana tabacum var.
Maryland Mammoth
Hyoscyamus niger (+) 0
Nicotiana tabacum var.
Maryland Mammoth
Nicotiana silvestris + 0
*Flowering response + Flowers initiated in all grafts
(+) Flowers initiated in parts of grafts
0 No flower initiation
*Perhaps unspecific effect, see (125).

Light and darkness in the photo periodic response of long-day plants.—The foregoing discussion shows that the immediate flower-controlling effect of daylength is localized in the leaves and that it results in the formation of a floral stimulus which is alike in LDP and SDP. The difference between the two response types must be sought in those changes which photoinduction causes to take place in the leaves. Daylength or, as it was described by Garner [272] and Allard, the daily light-dark ratio, is not an elementary environmental condition, like light alone, temperature, humidity, etc., but is a composite of light and darkness. The first task in the elucidation of photoperiodic responses will be the disentangling of the respective roles of the two conditions. The principal material available for this task stems from two types of approaches: the use of light-dark cycles of different total length and the use of differential experimental conditions in the light and in the dark periods. To establish the individual significance of the two periods they must be varied separately, but as long as one works with the natural 24-hr. cycles the length of the two periods can be varied only simultaneously. Therefore, one must change the total length of the cycle or subject the plants to one set of experimental conditions in the light periods and to another set in the dark periods. Another approach which has proven to be very valuable is the application of small amounts of light in the dark periods, given either as extended periods of illumination with very low light intensities, or as short-time interruptions with light.

In the case of LDP, both indirect and direct evidence indicates that an essential factor in their photoperiodic response is an inhibitory effect of long dark periods, an effect which tinder short-day conditions prevents the formation of the floral stimulus.

4) Under "short" and "long" light and dark periods, any periods are understood which are shorter or longer, respectively, than the light or dark period at the critical daylength of the plant in question.

The indirect evidence follows. (a) LDP flower in continuous light and no kind of light-dark alternation has been found to be superior to the continuous light regime (43, 79, 114, 119, 123, 132, 164). Thus, dark periods do not have any indispensable positive part in the formation of the floral stimulus in LDP. (b) LDP stay vegetative if short light periods are combined with long dark periods. If, however, short light periods are given together with short dark periods, flower formation takes place (3,121, 208).4 The critical factor in short-day action is not the shortness of the light periods but the length of the dark periods. (c) In most LDP flowering response and temperature seem to be negatively related. Floral initiation is promoted and the critical daylength is lowered as the temperature is decreased (109, 123, 197), the decisive role in this effect being played by the temperature of the dark periods (114, 123, 174). The inhibitory effect of dark periods seems to increase with increasing temperature and floral initiation is suppressed in shorter periods of time. The seemingly reverse temperature relationship which has been observed in a few LDP [Rudbeckia bicolor, Bouvardia humboldtii (167, 197, 210)] need not be a true exception to the rule, for the inverse relationship between temperature and floral initiation in LDP may hold only for a certain range of temperature and may break down if these limits are transgressed (132).

The direct evidence is based on work done with the LDP, Hyoscyamus niger. Flowers in this species are promptly initiated under short-day [273] conditions if the plants are kept continuously defoliated; the rate of floral initiation in defoliated plants is the same in long and short days (117, 122, 123). This demonstrates not only that the formation of the floral stimulus is actively suppressed in short days, but also that the inhibitory action is seated in the leaves, while the axis tissues are free from it. It is also clear that under short-day conditions the leaves are capable of preventing the formation of stimulus in the axis as well. In other words, the inhibitory action extends over some distance.

Now arises the question of what the exact function of light is in the formation of the floral stimulus in LDP. Does it only remove the adverse effects of dark periods or does it, in addition, have some positive, promotive function of its own? At first glance, the latter alternative seems to be the right one. Floral initiation can be induced in LDP by supplementing the light periods of short days with light of very low intensities (48, 64, 230, 231) or by interrupting the dark periods of short days with brief periods of light (15, 23, 49, 169, 180, 214, 215). The energies necessary for complete annihilation of the effect of long dark periods lie, although apparently varying within rather wide limits in different plants, between 100 and 1000 f.c. min. (foot candles X minutes). A significant effect may be obtained with 10 f.c. min. On the other hand, the light energies required for the effectiveness of the light periods fall in the range of photosynthetically active light. In sugar beets (Beta vulgaris), for example, the minimum is about 700 f.c. of continuous light (169) or approximately 1 X 106 f.c. min. per 24 hr. It appears that we are dealing with two distinct light actions, one which promotes the formation of the floral stimulus directly and requires high amounts of light energy and another which removes the inhibitory effects of darkness and requires small amounts of light energy.

However, the relations of light to the formation of the floral stimulus in LDP are apparently more complex. Hyoscyamus forms flowers upon defoliation not only under short-day conditions, but also in continuous darkness (117, 122, 123). Thus, if no inhibition is present, the formation of the stimulus is not dependent on light at all; light periods are necessary only because this process is normally suppressed in dark periods. It is true that to date a comparable effect of defoliation has not been observed in other LDP (42, 123, 125, 132). But in these cases the defoliated plants failed to produce flowers not only in short days or in continuous darkness, but also under long-day conditions. Therefore, these negative results do not invalidate the positive ones which have been secured with Hyoscyamus. It seems that either the generation of the floral stimulus itself in most LDP takes place only in the leaves or that to carry out this function (or perhaps, in some cases, to carry on a sufficient amount of growth, which is of course the prerequisite for the production of any new structures) these plants need a continuous supply of some material which is formed only in light and in the leaves. Hyoscyamus is unique only in that it is capable of carrying out these functions at the expense of stored material alone. It is important to note that [274] this plant also forms flowers upon defoliation only after having attained a certain size and having produced a well developed storage root. Intact plants are sensitive to photoinduction at a much earlier age.

The specific action of light in the photoperiodic control of floral initiation in LDP is, then, the counteraction of the inhibitory effect of dark periods in the formation of the floral stimulus. This effect is accomplished by small amounts of light energy. High-intensity light has only some preparatory role and does not enter directly into the formation of the floral stimulus.

This latter concept is supported by several additional facts. If Hyoscyamus is grown on 48-hr. cycles, floral initiation occurs with shorter periods of light per cycle than it does in 24-hr. cycles (9 versus 11 hr.), although the dark periods are naturally much longer (50). In the LDP Spinacia (spinach), flower formation can he obtained in individuals raised in total darkness (on sugar-containing media) (70). It is possible that the inhibitory effect which appears in the dark periods is ultimately dependent on the normal development and functioning of the leaves, that is, on the presence of high-intensity light periods.

The question which remains now is how the counteracting effect of the low-intensity light is achieved. In considering this question, two most essential facts must he taken into account: (a) while LDP remain vegetative on short-days, they form flowers with long light periods even if the dark periods are simultaneously extended by a much greater factor (3, 50, 132, 208); and (b) as noted earlier (p. 268), an interruption of the photoinduction of an LDP does not reduce its effectiveness. It thus seems that the inhibitory action of dark periods is limited to the immediately adjacent light periods. This may be caused partly by the fact, discussed in the preceding paragraph, that the effectiveness of the dark periods is not unlimited, but declines if the periods become too long. However, fractional induction could be explained on this basis only if the maximum of the dark-period effect were already reached at the critical daylength. Since the dark-period effect is increased by higher temperature, this does not seem to he the case. Two assumptions can he made: (a) a dark period tends to destroy the changes which have taken place in the preceding light period, but if the light period is extended beyond a certain limit, further changes take place which are insensitive to the dark-period effect; (b) some adverse effect of the preceding dark period must be eliminated in the course of a light period before the formation of the floral stimulus can set in. The first alternative implies that the formation of the floral stimulus proceeds in two stages and that the second cannot he entered until the first has attained a certain level (208). The second alternative implies that the floral stimulus itself is insensitive to the dark-period effect from the beginning and is being produced to the extent that the darkperiod effect has been sufficiently reduced. This alternative seems more plausible. It is also supported by the observation that supplementary low-intensity light (see above) is more effective in promoting floral initiation if given prior to the high-intensity light period than if given afterwards (64). This may mean that the initial low-intensity light removes the dark-period effect [275] and thus enables the plant to utilize fully the high-intensity light. The evidence, however, is not yet conclusive. If the light action follows the dark action, it must be assumed, because of the defoliation experiments in Hyoscyamus, that the dark action involves the production of a transmissible, inhibitory material. This possibility has not been studied so far. As long as it has not been proven one may consider that the inhibiting action of darkness is localized entirely within the leaves and that the distance action which is evident in Hyoscyamus is caused by the diversion of some material necessary for the production of the floral stimulus from the axis tissues to the leaves (cf. 123). An inhibitory effect of short-day leaves has also been noted in other LDP in experiments with localized photoinduction (38, 39, 229); but this may be interpreted either way and, in addition, may be caused not by an inhibition of the formation of the stimulus, but of its translocation from long-day leaves to growing points (see p. 282). As long as these questions are not settled, the exact mode of interaction of light and darkness in the photoperiodic response of LDP remains an open question.

5It seems that in some SDP the effect of the dark periods does not decline as the periods are extended but continues to increase, although apparently at a slow rate. Perilla plants, which will not respond to a single optimal 24-hr. induction cycle, form flowers if exposed to a single long dark period (130 hr. or more). If, however, the plants are given several 24-hr. cycles, the total number of dark hours required for photoinduction may be as low as 36 (139).

Light and darkness in short-day plants.—The significance of light and darkness in SDP becomes evident from the following results. (a) SDP initiate flowers only if they receive light-dark cycles with sufficiently long dark periods. If the dark periods are reduced below a certain limit the flowering response will decline and will ultimately fail; however, the response is also reduced if the light periods are reduced, even if the dark periods are maintained at an optimum level (see data in 3, 79, 81, 164, 198). Furthermore, if differential treatment is applied in the light and the dark periods of photoinduction (see p. 272), the response is affected in a similar manner: it is promoted by favorable conditions (favorable temperatures) and is reduced or suppressed by unfavorable ones (low or excessively high temperature, application of narcotics) (81, 87, 143, 145, 176). Both light and dark periods are evidently needed for the formation of the floral stimulus in SDP. (b) In some SDP [Xanthium (79); Chenopodium amaranticolor (139)] a single photoinductive cycle may be sufficient to cause floral initiation. In this case, the light period has to precede the dark period (79). Thus, light periods of sufficient length are needed to render inductive dark periods effective. (c) If the light periods are kept at a constant, optimal level and the dark periods are extended, the flowering response is reduced (3, 198). The beneficial effect of a light period seems to be limited; when it is used up, the dark period effect, which has already built up, apparently begins to deteriorate. This deterioration must be rather slow, for the decline of the response with extension of the dark periods is gradual (3, 198), and complete failure occurs, if at all, only with very long dark periods [in Kalanchoë blossfeldiana, for example, 88-112 hr (98)].5 [276] (d) If an SDP can be photoinduced with a single light-dark cycle, there is no upper limit to the light period; but in SDP that require more than one induction cycle, extension of the light periods leads to a rapid decrease of the flowering response (3, 79, 198). Also, fractional induction seems to be not possible in SDP, at least not without loss in effectiveness (14, 98, 121, 143). Thus, while light is required to make the following dark period effective, the effect of a dark period is reduced and can be nullified in the following light period. In other words, we are dealing in SDP with two antagonistic light effects. The formation of the floral stimulus depends on two sets of changes, one requiring light energy, the other inhibited by light. The light-inhibited changes cannot set in before the light-requiring changes have become effective; but they must be, in their turn, protected from too long light periods. The floral stimulus is produced or persists in SDP only if the plants are subjected to regular alternations of appropriate light and dark periods.

The inhibitory action of light on SDP is accomplished by the same minute quantities of light as is the low-intensity light action on LDP. These quantities may be given as low-intensity supplementary light (64, 230, 231) or as brief light interruptions in the dark periods (79, 81, 84, 181, 192, 206, 214, 215). This light action is very similar to the low-intensity light action on LDP, but its effect with regard to floral initiation is just the opposite.

The minimum duration of the light periods and the minimum amounts of light which are required to make them effective, show an amazing variation between species. Some species need light periods comparable to the minimum light periods of some LDP. Such plants have sometimes been considered as a separate photoperiodic group [intermediate or middle-day plants (2, 164)]; but the demarcation between these and the usual SDP is a gradual one. Several typical SDP have minimum light periods between two and five hours (164), and the light intensities required in the light periods of SDP are comparable to those needed in the light periods of LDP (cf. 17, 79, 145). In Kalanchoë blossfeldiana, however, as little as one second of daylight proves sufficient to secure a flowering response which is not greatly inferior to the optimal response obtainable [Harder & Gümmer (88)]. In Xanthium and in Perilla, flower formation can be induced by transferring the plants to continuous darkness (79, 139). In Perilla this treatment is effective even if it is preceded by an extended light period of very low light intensity [Lona (139)]. Extension of the light periods in Kalanchoë results in an increase of the response only after periods of approximately 30 min. have been reached. These remarkable facts suggest that the promotive light action in floral initiation of SDP may be composed of two different effects: one which requires only small amounts of light energy and another which becomes effective only with rather high amounts of light energy. Time high-intensity light effect can apparently be dissociated from the actual processes of floral initiation, at least in some short-day species, and can be replaced by storage material. Similar to the high-intensity light action of LDP, this effect is of a preparatory nature. This idea is again supported by the observations that Perilla [277] plants respond to the dark treatment only after they have reached a certain age and that the effectiveness of the extremely short light periods in Kalanchoë is consistent only in plants which are in good vegetative condition. The promotive low-energy light effect, in turn, seems to have some immediate function in the formation of the floral stimulus, for if the one-second light periods in Kalanchoë are omitted and the plants are kept in continuous darkness, they stay strictly vegetative (88).

Chemical changes involved in the formation of the floral stimulus—The analysis of the photoperiodic responses of LDP and SDP enables us-to distinguish several well defined partial processes in the formation of the floral stimulus. We can distinguish four such processes in LDP: a preparatory high-intensity light process (L-I); a light-independent process which results in the actual appearance of the stimulus (L-II); a dark process antagonistic to L-II (L-III); and a low-intensity light process antagonistic, in its turn, to L-III (L-IV). The following partial processes are well established in SDP: a light process (S-I) and a dark process (S-II), both of which are necessary for the stimulus to be produced; and a low-intensity light process antagonistic to S-II (S-III). If antagonistic relationships are expressed by arrows, the sequence of the processes can be written as follows:

As discussed above, S-I consists quite likely of a preparatory, high-intensity light process comparable to L-I and of a low-energy light process which is directly involved in the production of the floral stimulus. L-II may have to be subdivided into two separate processes (see p. 274), only the first of which would be subject to the action of L-III.

The separation of the whole process of the formation of the floral stimulus in LDP and SDP into a series of partial processes provides us with a basis for biochemical approaches to the problem. Before this separation had been achieved, there was practically no way to establish if any chemical changes following photoinduction were related to floral initiation in a causal or in an incidental manner. The extensive studies of such changes which were carried out in the earlier period of research in photoperiodism, or were carried out later without taking into account the recognition of the partial processes, have yielded next to nothing towards a biochemical understanding of the photoperiodic responses.

The possibility and necessity of separating photoperiodic responses into partial processes have been recognized only in the course of the last 10 or 12 years, beginning with the work of Hamner & Bonner (81) and Hamner (79) with SDP and of Lang & Melchers (123) with LDP. In view of this short period of time it is understandable that the amount of conclusive biochemical information on the individual partial processes is still very limited. What we [278] do know concerns the high-intensity light process of LDP (L-I), the promotive light process of SDP (S-I) and the inhibitory dark process of the former (L-III). In addition, we have some evidence that the auxin level in the leaves plays some important part in the photoperiodic induction, at least in SDP. This question will be considered in a separate section.

The high-intensity light processes of both photoperiodic types seem to be identical with photosynthesis or to be closely tied in with it. This fact is suggested in the first place by the order of magnitude of the light intensities which are required for these processes, and is supported by the following evidence: (a) Hyoscyamus plants initiate flowers under noninductive conditions if supplied with sugar (123); and (b) in Xanthium, floral initiation can be induced by a single dark period if the plants, instead of being subjected to a high-intensity light period, are fed with sugar (12). The experiments with Spinacia (p. 274) and with defoliated Chenopodium (p. 285) may also be cited in this connection.

If the high-intensity light processes of LDP and SDP are identical with photosynthesis, their function is evidently restricted to securing the substrates which furnish the energy required in the formation of the floral stimulus and their relationship to this latter process would he indirect-in fact, rather remote. This is in agreement with the findings, discussed earlier, that in some plants the high-intensity light effect can he separated from the actual formation of the stimulus and can be replaced by storage material. In LDP this nonspecificity is particularly evident, for the effectiveness of the inhibitory dark process (L-III) seems also to depend ultimately on the presence of adequate light periods (see p. 274). L-I would seem to supply the substrates for any reactions involved in flower formation, whether promotive or inhibitive.

As to what part of the energy metabolism is involved in the generation of the floral stimulus, we have only one experimental indication. In Xanthium, the light periods may be replaced not only by feeding sugar, but also by organic acids of the Krebs cycle (131). An additional supply of these acids during the light periods of photoinduction increases the flowering response (106). Thus, the essential factor may be the transformation of pyruvic acid rather than the preceding glycolytic sequence.

As to the light which promotes floral initiation in SDP (low-energy effect), we have to date again only one indication of the direction in which its effect might be sought. It has been found that photoinduction is effective in SDP only if the atmosphere in which the plants are maintained during the light periods contains CO2 (177). This seems to be a further proof that the high-intensity light process is identical with photosynthesis. But Since in Kalanchoë only one second of light is required, this is probably not the sole explanation. In Kalanchoë, too, CO2 is necessary for photoinduction. Moreover, in localized inductive treatment the short-day parts of the plant must be supplied with CO2 directly; the presence of CO2 over large long-day areas is of no avail (86). This necessity suggests that some CO2 fixation not identical [279] with photosynthesis may be involved in the formation of the floral stimulus and that to carry out this fixation the plants must receive at least a small amount of light. If would be most interesting to know whether CO, must be present during the one-second light periods themselves or whether it might be given shortly afterwards. Whether the effectiveness of organic acids has a special meaning in this connection also remains to be seen.

Process L-III is tied in with oxidative reactions, for floral initiation in LDP can he caused under short-day conditions by keeping the plants during the dark periods (or part thereof) in an atmosphere of nitrogen (48, 152, 238).

Auxin and photoperiodic induction.—The role of auxin in the photoperiodic induction of SDP is basically clear. First, flower formation by SDP can be suppressed under short-day conditions by treating the plants with auxin or synthetic growth-regulating substances (13, 90, 131, 141, 201, 218) and can be induced under noninductive conditions by treating with auxin antagonists (8, 131) or with ethylene chlorhydrin (105), an agent which also seems to lower the auxin content of plants (cf. 158, 213). Thus, floral initiation depends on a reduction of the physiological auxin level in the plant. Second, leaves of a SDP which were treated during photoinduction with an auxin are not effective if used as donors to receptor plants maintained on long days (13). Thus, the crucial factor seems to be the auxin level in the leaves during photoinduction, and the effect of high auxin levels seems to consist in an inhibition of the formation of the floral stimulus. Third, the effect of auxin on photoinduction is most pronounced if the application is made at the beginning of the dark period (9). If the application is made following the dark period (9, 131) or the end of the photoinductive treatment (131, 201), the effect is much smaller or nonexistent. Thus, the auxin level seems to be specifically associated with the functioning of the dark-period process of SDP (S-lI) or with its immediate outcome, and the effect of inductive dark periods seems to involve a lowering of the auxin level in the leaves. The later stages of flower development seem to require an increase in the auxin supply, for in Xanthium, antiauxin-induced inflorescence primordia may fail to develop unless the plants are treated later with auxin (131).

In what manner inductive dark periods affect the auxin level in the leaves, and in what exact manner this level is involved in the formation of the floral stimulus, is entirely a matter for speculation. An essential step in the elucidation of this problem would be a direct determination of the changes in the auxin level of a leaf in the course of an inductive dark period and of photoinduction in general. To date, only some comparisons of the auxin content in short-day and in long-day treated plants are available. The do indicate that the amount of extractable auxin may be less under short-day conditions (9, 12, 233, 237); however, wherever in these determinations the relationship between the activity and the dilution of the extracts was checked, it was not found to be linear. These results, therefore, are not reliable. The apparent reason for the lack of linearity lies in the fact that the leaves of numerous plants contain some auxin inhibitor. Its presence not only prevents auxin [280] determinations by the classical methods, but may also complicate the entire issue, for the physiological auxin level in a tissue may depend, not only on the amount of auxin itself, but also on the amount of auxin antagonist present. It is to be hoped that the use of modern separation techniques in auxin analysis (103, 129) will help us to resolve this difficulty.

6A general discussion of the effects of auxin in flower formation is given by Bonner & Bandurski in another article in this volume (pp. 59-86) and also in Bonner & Liverman (11).

The question as to what role, if any, auxin has in the photoperiodic control of floral initiation in LDP is an entirely open one. Most LDP grow in the vegetative state as rosettes. Stem elongation coincides with floral initiation and may, in fact, be slightly ahead of it, even in LDP in which the further development of flowers may proceed without stem elongation [certain Rudbeckia species (77, 91, 167)]. A close interrelationship between the two processes and thus between floral initiation and auxin is indicated. Occasionally, however, stem elongation has been observed in rosette-type, long-day plants without any flower formation, although the conditions causing this occurrence are not clear (123), and in some LDP [species of Urtica, Anagallis, Circaea, etc. (cf. 44, 137)] stem elongation is quite independent of floral initiation and takes place both in long- and in short-day conditions. The results of auxin applications and of experimental treatments which decrease the auxin content of plants (X-ray and ultraviolet irradiation) are not less controversial. In Silene armeria, auxin treatment seems to be capable of inducing floral initiation under noninductive conditions (131). In Hyoscyamus the results have so far been negative, but the periods of treatment may have been too short (49). Under long-day conditions, flower formation was delayed by auxin application in one LDP (Calendula officinalis) and was speeded by ultraviolet irradiation in two other presumptive LDP (Statice bonduelli and Linum), but remained unaffected in numerous other cases (58, 59). In Hordeum (barley) the number of flowers (spikelets) initiated, also under long-days, was increased both by x-ray irradiation and by the application of low auxin dosages, although it was decreased by higher dosages (127). However, in-this case there is no proof that we are concerned with a specific effect in floral initiation.6

The absorption of the photoperiodic light energy.—Since various light actions are involved in the photoperiodic responses of LDP and SDP, there arises the problem of the nature of the system mediating the absorption of the light energy and the immediate changes caused by this energy. We have at present some information about the action spectra of the low-intensity light process of LDP (L-IV), the inhibitory light process of SDP (S-Ill), and one piece of evidence about the nature of the last-named process. Comparable studies on the high-intensity light processes in both photoperiodic types are lacking. Such studies should yield material information about the nature and the specificity of these processes, but the high energies required make them a technically difficult job.

[281] Our information about the action spectra of the two low-intensity light processes comes from the work of Borthwick, Hendricks, and Parker. This work has been reviewed in Volume I of the Annual Review of Plant Physiology (179; see also 20, 21). It has revealed that we are dealing with a specific light-absorbing system hitherto not noted in higher plants; that the system is identical in LDP and SDP (15, 180, 181); and that the same system mediates the light energy in several other morphogenetic effects of light, namely in the control of stem elongation (15) and of leaf growth (182). In the earlier work of these authors, the extent to which the spectra might have been modified by screening effects of other pigments was in some doubt, but recently the same spectrum (for the control of stem elongation) has been demonstrated in an albino mutant of Hordeum free of any of the major plant pigments (16). Such complete absence of screening would be hard to understand if the system which absorbs the photoperiodic light energy were localized in the chloroplasts. This result, therefore, suggests that it is localized in the cytoplasm.

The action spectra obtained by Borthwick and co-workers show absorption throughout the entire visible spectrum, but with a pronounced maximum in the red and a second, much smaller maximum, in the blue. This finding agrees in an over-all fashion with the results of most of the earlier work done in the field (104, 107, 223, 230, 231, 232). None of the early work had, however, been sufficiently quantitative to reveal the difference between the photoperiodic action spectrum and that of photosynthesis and the implication had, therefore, been that the two were identical. Funke alone has maintained that in addition to those plants in which the photoperiodic response is mainly determined by red light, there are three other groups: one responding equally well to red and blue, one responding only to red plus blue, and one responding to blue alone (66, 67, 68). Since Funke's technique was not very satisfactory, these claims were open to some doubt. It comes, therefore. somewhat as a surprise that recently Wassink et al. (225), using fully reliable equipment (cf. 224), found in an LDP, a variety of Brassica napus oleifera, a photoperiodic action spectrum entirely different from that of Borthwick and co-workers and similar to that of Funke's fourth type, namely, principal effectiveness in blue and violet, and, in addition, in the near infrared (below 0.95m). It is not entirely clear, however, whether the Brassica spectrum relates to floral initiation, for the leaf numbers which are given in one instance show comparatively small differences and do not corroborate the clear-cut superiority of the blue-violet range indicated by the dates of bud appearance. But the spectrum as such remains very interesting, particularly the effectiveness of infrared. Effectiveness of infrared (1.0-2.5m)is also reported in the SDP Perilla (166).

Borthwick and co-workers conclude from the study of their action spectra that the absorbing system is probably an open-chain tetrapyrrol pigment, such as a phycocyanin. Direct attempts at identification have not yet succeeded (183). In the absence of further indications as to the nature of the [282] pigment, its identification promises to be a very tedious task, for a rough estimate, based on the amount of characteristic absorption in the region of maximum effectiveness in the albino Hordeum seedlings, indicates that the pigment is present in exceedingly small quantities (16).

The small quantity of the pigment may account, however, for the low-intensity character of this photoperiodic light action. The system which absorbs the light energy for this action will be saturated at low intensities and any light exceeding these intensities will be wasted for the photoperiodic response.

The information about the nature of the inhibitory light process of SDP stems from work of Harder et al. (92) on Kalanchoë. Harder and co-workers found that the effect of light interruptions in the dark periods of photoinduction is entirely independent of temperature. This result shows that either the entire process S-III is a single photochemical reaction or that any biochemical reactions associated with the light reaction require a comparatively long time to become effective and therefore are not affected by the temperature conditions prevailing in the short periods of the application of light.

The movement of the floral stimulus.—The floral stimulus is normally transmitted through leaf, petiole, and stem tissue, but it can also pass through root tissue (35, 211). The translocation is entirely nonpolar (for example, 28, 31, 81, 137, 201); the stimulus may, for example, move down one branch of a plant and up another. The movement out of the leaves can apparently take place through the mesophyll, for it is not affected by severing the midrib at the base of the leaf blade (33). In petioles and stems, the stimulus probably moves in the phloem. This probability is indicated in the first place by two observations. First, girdling, steam treatment, localized low temperature, or narcotics treatment of stems and petioles all reduce or interrupt transmission (19, 36, 69, 228). The stimulus evidently moves in living cells. Second, in plants with opposite leaves the stimulus stays preferentially in the stem sector adjacent to the leaf, although this may be apparent only with low amounts of the stimulus (nonoptimal photoinduction) or only in the early stages of inflorescence development (83, 85, 95, 142). Since dyes introduced into the conducting system exhibit the same behavior the movement evidently proceeds in the vascular bundles.

The principal evidence for the phloem transport of the stimulus, however, is furnished by another fact. Both in localized photoinduction and in grafts, the flowering response of the noninduced part or partner is greatly reduced by the presence of leaves (37, 38, 39, 81, 89, 93, 98, 121, 128, 131, 133, 136, 137, 163, 165, 170, 201, 211). This inhibitory effect is present both in LDP and in SDP, although in the former it is generally less pronounced. It may be ascribed to the generation by the noninductive leaves of a solute stream opposed to the solute stream coming from the induced leaves. This means, of course, that the floral stimulus is carried along in the stream of photosynthates moving in the sieve tubes. This explanation is very strongly suggested by the following facts: (a) the inhibitory effect is exerted only by [283] mature leaves, that is, leaves capable of efficient photosynthesis (for example, 165); (b) it is exerted exclusively by leaves located between the source of the stimulus and the receiving bud (or in such cases where the induced and noninduced leaves are located at equal distances from the bud and no other buds are present in the plant) (38, 39, 83, 201, etc.); and (c) the inhibition is enhanced if the youngest leaves on the receptor shoot are removed, that is, if the effectiveness of the region attracting the solute stream is reduced (81, 128, 131, 165). The inhibitory effect of long-day leaves in SDP can be simulated by supplying defoliated, long-day parts of the plant with sugar solutions, thus generating an artificial solute stream opposed to the solute stream moving from the induced leaves (40). In the SDP Perilla, the inhibitory effect of long-day leaves is reduced if the light intensity given to these leaves is decreased (40); in the LDP Urtica pilulifera,  the inhibitory effect of short-day leaves disappears if the light periods given to the short-day parts are reduced to 1 to 3 hr. per day (137). In either case, the leaves apparently are no longer capable of generating an effective solute stream. In Urtica and also in the SDP Kalanchoë (201), but apparently not in Perilla (37, 165) nor in the LDP Beta (211), inhibition is also exerted by leaves kept in continuous darkness. Such leaves appear to act as sinks which intercept the solute stream and sidetrack the floral stimulus.

The inhibitory effect of leaves on the translocation of the floral stimulus can be demonstrated only with leaves kept under the noninductive daylength conditions. It is, however, very probably a normally occurring phenomenon. Photoinduction of a single leaf, and even part of a leaf, in the absence of inhibiting leaves may give a flowering response equal to that obtainable with photoinduction of the entire intact plant (18). If the stimulus were formed in each leaf in great excess, there should be an inverse proportionality between the minimal number of inductive cycles and the number of leaves left on a plant. In reality, it takes the same number of cycles to induce an intact plant and a plant defoliated to one leaf. It thus seems as if the relative effectiveness of photoinduction decreases with increasing size of the treated area. One reason for this relationship is probably that the efficiency of different leaves in the production of the floral stimulus is not the same. The sensitivity of a leaf to photoinduction increases until full expansion and then becomes gradually smaller (18, 160, 170); both older and immature leaves apparently produce less stimulus than mature, but younger leaves. However, another, and quite probably the principal, reason is that leaves which are closer to the growing point interfere with the translocation of solutes from more distant leaves so that the floral stimulus formed in the latter is not efficiently transmitted to the growing points.

The only attempt to estimate the translocation rate of the floral stimulus has yielded values approximating 2 cm in 24 hr. in stems and 0.5 cm in 24 hr. in roots (34, 35). These values are considerably below the translocation rates estimated for solute movement in sieve tubes. It is, however, uncertain whether the observed rates were optimal, since in the experiments the length [284] of the transport route (down and up a whole stem, split lengthwise) may have been out of proportion to the size of the supplying area (a single leaf).

The general mechanism of photoperiodism.—The study of LDP and SDI, as reviewed in the foregoing sections, provides us with a fairly definite idea of the general mechanism of daylength action in floral initiation. The action consists in adjusting the balance of several individual processes participating in floral initiation, some of them having a promotive and some an inhibitory character. This is an important result in itself, for such a situation is by no means self-evident. One could have thought that in LDP, floral initiation depended on a single light-requiring process, in SDP, on a single light-inhibited process, and that periods of light and darkness respectively merely delayed the attainment of the necessary effect, but did not interfere with the effect already accumulated. In such a case, only one of the two component conditions of daylength, either light or darkness, would be the controlling factor, with the other acting as a mere passive interruption. The term photoperiodism, in fact, would not be justified. But in the daylength effect on floral initiation, light and darkness both play an active part and their actions must be properly timed for flower formation to occur. This daylength effect thus contains a definite element of periodicity. In LDP, however, the action of dark periods with regard to floral initiation is a purely inhibitory one. An actual alternation of light and dark periods is therefore necessary for (or promotive of) floral initiation in SDP alone. One can say that the real photoperiodic response in SDP is the induction or promotion of floral initiation by the inductive daylength conditions, whereas in LDP the response is the suppression or retardation of floral initiation by the noninductive conditions.

On the basis of these considerations, one can arrive at new and all-inclusive definitions of LDP and SDP. LDP are plants in which the daily dark periods inhibit or delay flower formation and SDP are plants in which the daily dark periods induce or accelerate flower formation. These definitions also cover those plants which lack a pronounced critical daylength (see p. 267) and therefore eluded classifications based on the critical daylength concept. It must only be borne in mind that in some plants daily dark periods of any duration will affect flower formation, whereas in the majority the dark periods do not become effective unless in excess of a certain minimum value.

These definitions have the additional advantage of reflecting the situation in nature. The shortest daylengths encountered anywhere in the world in the course of the growing season are still quite in excess of the minimal light periods required for floral initiation in SDP. The only exceptions are the so-called intermediate plants (see p. 276) which require both a comparatively long light period and a comparatively long dark period. These plants, therefore, flower only in a very narrow range of natural photoperiods. But LDP, too, are capable of flower formation with quite short light periods, provided these are not accompanied by long dark periods (see [285] p. 272). Thus, both in SDP and in LDP under natural conditions the factor which determines whether and when flower formation occurs is the length of the daily dark period.

The daylength-controlled stages of floral initiation are passed in the leaves. This does not mean that other plant parts are entirely incapable of responding to photoinduction or of bringing about floral initiation. We have seen that completely defoliated Hyoscyamus plants form flowers (p. 272). Defoliated plants of Chenopodium amaranticolor (139) and Xanthium (126) form flowers under short-day conditions. Such cases also show that the relative strength of the different processes can vary in different parts of a plant. In Hyoscyamus the inhibitory dark process (L-III) is limited to leaf tissue. A comparable, although more quantitative, situation seems to exist in Chenopodium with regard to the inhibitory light process (S-III). If defoliated plants of Chenopodium  are fed with sugar, they become capable of forming flowers under long-day conditions [Lona (138)]. If enough substrate is available, apparently the process S-Il becomes effective in stem tissue even in the presence of long light periods. However, if a single leaf is left on the Hyoscyamus, Chenopodium, or Xanthium plants, floral initiation (under inductive conditions) occurs faster than in completely defoliated individuals. There is no doubt that in intact plants photoperiodic response and floral initiation are determined by the activity of the leaves.

We now must ask if our knowledge of the general mechanism of daylength action enables us to formulate a more detailed interpretation that will cover LDP and SDP at the same time. In either response type, we have recognized a series of processes controlling the formation of a floral stimulus. The stimulus is the same in both types. Therefore, its production probably follows one and the same pathway in LDP and in SDP, and a process which participates in the formation of the stimulus in a direct and promotive manner in LDP should also be present in the SDP, and conversely. Furthermore, the systems which mediate the light energy in the low-intensity light process of LDP (L-IV) and in the inhibitory light process of SDP (S-III) are also identical and it is therefore very probable that these two processes are identical in turn and that their seemingly opposite effect with regard to floral initiation is based on a quantitative rather than a qualitative type of difference.

We might make, for example, the following assumptions: (a) the formation of the floral stimulus depends on the presence of the proper auxin level in the leaves; (b) the auxin level decreases in the course of dark periods; and (c) in SDP the appropriate auxin level is reached only after an extended dark period, whereas in an LDP the auxin level is lowered by such a dark period to ineffectiveness. If this interpretation is correct, the processes L-III and S-II and the processes L-IV and S-III would be identical. The two former would consist in a reduction of the auxin level. Processes L-I and S-I would also be identical, and process L-II would consist in the actual formation of the floral stimulus in SDP as well as in LDP. [286]

It must be emphasized, however, that the above interpretation is a mere conjecture, given as a more tangible illustration of the kind of relationships we may have to look for rather than as an hypothesis which is established on specific experimental evidence. Our insight into the role of auxin in photoperiodic induction and floral initiation is far too insufficient to draw definite conclusions, and we do not know of an auxin-increasing light effect as assumed above. Quite generally we must admit that our knowledge of the partial processes involved in the formation of the floral stimulus in LDP and SDP is not yet detailed enough and that much more experimental work will be needed before we will be in a position to make precise comparisons between the individual processes of the two response types.

We also cannot be quite certain to have recognized all major processes participating in the photoperiodic responses. While those processes of which we do know will account in an over-all fashion for all aspects of the behavior of LDP and SDP, some features in the kinetics of their responses are still puzzling. The dark process of SDP (S-Il) can be nullified if the dark periods are interrupted by very small amounts of light; yet, its effect evidently survives the very much longer light period of the next inductive cycle. One may assume that the effect of the dark process builds up, not in a linear fashion, but slowly at first and then with greatly increasing rapidity; but it remains a matter for amazement that an effect which is abolished b one minute of light after 9 hr. of darkness can, after 15 hr. of darkness, be nullified only by light periods of somewhere between 14 and 19 hr. duration (data after 84 and 198).

This extraordinary change in light sensitivity can be accounted for in two basically different ways. One can once more postulate that several consecutive changes take place in the course of inductive dark periods and that their products differ in the. degree of light-sensitivity. This assumption has been made by Hamner (79, 80) who thinks, that after the beginning of the dark period changes take place which after a definite duration of the dark period reach a threshold value, and that then other changes set in, the result of which is much less light-sensitive than the result of the former.

One can, however, also assume that the efficiency of the light itself changes in the course of a dark period. This idea has been introduced by Bünning (22 to 27), and Bünning has made it the basis of a general hypothesis of photoperiodism, suggesting that the changes in light efficiency are related to the so-called endogenous daily fluctuations of activity which are known to occur in plants. The evidence which Winning adduces in favor of this general explanation cannot be considered convincing, two principal objections being that the course of the endogenous periodicity has hardly been studied in plants with a clear-cut daylength dependence of flower formation [287] and that the endogenous periodicity occurs also in day-neutral plants and therefore cannot be the direct basis of photoperiodic responses but can, at best, contribute an additional element to their mechanism. The fundamental idea, however, remains, namely, that it may not be at all the course of some light-sensitive process involved in floral initiation that changes in a quantitative or qualitative manner in the course of the dark period, but that it is the relative effectiveness of light which changes in the course of this process. This idea is supported by one piece of information, obtained in an LDP. In Hyoscyamus plants grown on 48-hr. cycles the effect of light interruptions of the dark periods shows two maxima in the course of the period, separated by a period of little effectiveness (50).

Nature and action of the floral stimulus.—Our discussion of the photoperiodic responses on LDP and SDP has been based on the concept that photoinduction results in the formation of a transmissible floral stimulus. This idea was generally accepted after the correlative nature of the daylength action was clearly demonstrated. It was assumed that the stimulus is a specific substance, a flower hormone or "florigen" [Cailahian (28, 30, 31, 32), Moskov (161)]. Recently, however, several authors have argued against this idea (57, 138, 139, 141, 193). It has not yet been possible, in spite of some extensive and careful attempts, to extract an active material from photoinduced plants and to introduce it into noninduced test individuals (81, 153). Positive effects which have been reported in a few cases either proved irreproducible (10) or so slight that a conclusive confirmation is urgently required (195). In view of this failure it is argued that the specific processes of flower formation take place in the growing points and that the effect of daylength consists not in the formation of flower-promoting substances under the inductive conditions, but in the formation of flower-inhibiting substances under the noninductive conditions. Some of the authors identify these inhibitory substances with auxin (57, 193, 201) and suggest that photoinduction involves the production of auxin antagonists (201).

Several considerations bear on this controversy.

  1. Nonextractability is no conclusive proof against the existence of a flower hormone. It appears that cellular continuity is indispensable for the transmission of the floral stimulus because transmission in grafts occurs only after tissue union between donor and receptor has taken place (163, 228). [Some claims to the contrary were either not confirmed in later studies (81, 161) or are dubious for lack of exacting controls (71).] This fact may be based on the mode of translocation of the stimulus (along with the solute stream in sieve tubes [see p. 282]) and may render both the isolation of the hormone and its reintroduction into test plants virtually impossible.

  2. The evidence presented on p. 269 shows beyond doubt that some changes which promote floral initiation actively and which can be communicated to noninduced plant parts or to other plants do arise during photoinduction. Consequently, only two things can be assumed: (1) that these changes are not of a specific nature, but consist in the production of greater [288] amounts or of different ratios of the gross assimilates; and (2) that in addition to the flower-promoting changes arising under inductive conditions, there exists some flower-inhibiting material which is formed under noninductive conditions and prevents the promoting material from functioning.

  3. The possibility of fractional induction (see p. 268) is a very strong argument in favor of the specificity of the flower-promoting changes, for if the changes were such as mentioned in (a) 2, they could hardly persist and accumulate through extended periods of noninductive conditions. Fractional induction is possible only in LDP, but since the floral stimuli of LDP and SDP are identical, this argument also holds for the latter.

  4. In contrast to the evidence which can be adduced in favor of the existence of transmissible flower-promoting effects, the evidence in favor of transmissible flower-inhibiting substances is very poor. There is no doubt that the daylength control of flower formation involves inhibitory effects, but these effects seem to be directed, not against their functioning, but against the formation of flower-promoting substances. The main argument brought forward for the existence of flower-inhibiting substances antagonistic to the floral stimulus is the inhibitory action of noninduced leaves (see p. 282). This very action, however, can be accounted for in terms of translocation and is thus the least specific one that could be imagined. If it were based on the production of an inhibitory material, it would be impossible to see why it is limited to leaves located between the source of the floral stimulus and the responding bud. Actually, in Kalanchoë, even leaves located between an induced leaf and the bud are not inhibitive, or are but little so, unless inserted on the same orthostichy (93). There are at present only two cases in which the formation of some transmissible flower-inhibiting material appears possible, namely that of Chenopodium  described on p. 285 and that of Hyoscyamus described on p. 272. In Chenopodium, intact (nondefoliated) plants do not form flowers under long-day conditions even if fed with sugar; thus the sugar effect evident in leafless individuals appears to be suppressed when leaves are present (138). In Hyoscyamus, under short-day conditions, the leaves seem to suppress the formation of the floral stimulus in the axis tissues. However, neither case is entirely conclusive, for we may again be dealing with translocation phenomena. In Chenopodium, the solute stream proceeding from mature leaves may prevent the comparatively small amounts of floral stimulus formed in the stem of sugar-supplied plants from reaching the growing point; in Hyoscyamus, the effect may be the result of the diversion of some material from' the axis into the leaves (see p. 274).

  5. The idea that auxin is a flower-inhibiting agent is based on the inhibition of flower formation by applied auxin and its promotion by a lowered auxin level in the plant (see p. 279). But we have seen evidence that the auxin level enters into only one specific phase of photoinduction, at least in the case of SDP, and that this phase is once again concerned with the formation, and not with the functioning, of the floral stimulus. If the inhibitory effect of noninduccd leaves were based on auxin production (201), one would [289] have to assume that the auxin is transported to the induced leaves. This transportation would in numerous cases necessitate an upward movement. Auxin, however, is known to move only downward.

  6. If photoinduction consisted in the production of an auxin antagonist which is transported to the growing points, floral initiation should be induced under noninductive conditions by antiauxin treatment of the growing points. This obvious experiment has apparently not been made, but experiments in which the whole plants were treated do not support the idea. Since, however, there is no critical evidence whatsoever that the auxin concentration in the growing points has something to do with floral initiation, the entire idea is questionable. Besides, it is difficult to comprehend why an antiauxin could not be extracted from induced plants.

Two more general considerations also support the idea that the floral stimulus is a specific agent promoting floral initiation in a direct manner. One is the absence of any aftereffect of noninductive conditions. If these conditions acted by causing the formation of flower-inhibiting substances, one would expect that the longer a plant is maintained under the noninductive daylength, the more resistant it will be to photoinduction. In reality, the responsiveness to photoinduction increases either continuously (in such plants which ultimately flower even under extreme noninductive conditions) or until a final optimal level is reached.

The second consideration is based on the mode of action of daylength and it is also important for the general understanding of the role of daylength in the control of floral initiation. Floral initiation is an all-or-none event. Therefore, any factor or process which controls this event in a rather direct manner should likewise, have an all-or-none mode of action. If, on the contrary, a factor has a clearly quantitative effect, one can assume that some further processes intervene between its primary effect and floral initiation. Thus, if daylength were controlling floral initiation through the production of assimilates or of an auxin antagonist, whereas the specific processes of floral initiation took place in the growing points, one would expect photoinduction to have a quantitative effect. The effect of photoinduction in floral initiation is, however, pronouncedly qualitative, that is, of the all-or-none type. In Hyoscyamus, floral initiation takes place after the plant has received a definite number of photoinductive cycles, and cycles in excess of this number have no additional accelerating effect (123). Similarly, in short-day strains of Gossypium hirsutum, the first flowers are formed at approximately the same node, regardless of whether photoinduction was optimal or at the bare minimum of effectiveness (121). It appears that the floral stimulus is accumulated in the plant until a threshold concentration necessary for the differentiation of a floral primordium is attained; then the primordium is formed whether or not the production of the stimulus continues.

In summary, all available evidence is in agreement with the concept that the result of photoinduction is the appearance of a specific flower hormone which controls floral initiation in a direct and positive (promotive) manner. [290] noninductive daylength conditions interfere with the formation and not with the functioning of the hormone.

Part 2

Literature Cited